
Multiple Machines

• Model Multiple Available resources

– people

– time slots

– queues

– networks of computers

• Now concerned with both allocation to a machine and ordering on that
machine.

P ||Cmax

NP-complete from partition.

Example
j pj

1 10
2 8
3 6
4 4
5 2
6 1

• What is the makespan on 2 machines?

• 3 machines ?

• 4 machines ?

Approxmiation Algorithms

• Cannot come up with an optimal solution in polynomial time

• Will look at relative error : Cmax(our algorithm)/Cmax(OPT)

• Challenges:

– Our algorithm’s performance is di↵erent on di↵erent instances

– We can’t compute Cmax(OPT)

Approxmiation Algorithms

• Cannot come up with an optimal solution in polynomial time

• Will look at relative error : Cmax(our algorithm)/Cmax(OPT)

• Challenges:

– Our algorithm’s performance is di↵erent on di↵erent instances

– We can’t compute Cmax(OPT)

Solution:

• We will use a worst case measure on performance

• We will use a lower bound on Cmax(OPT)

Approximation Algorithms

An algorithm A is a ⇢ approximation algorithm for a problem, if for all
inputs

Cmax(A)

Cmax(OPT)
 ⇢

.
In addition, A must run in polynomial time.

We can’t compute Cmax(OPT) .

Recipe:

• Instead, we compute a lower bound LB(OPT) , such that

– LB(OPT) is easy to compute

– LB(OPT) Cmax(OPT) .

• We then show that Cmax(A) ⇢LB(OPT) .

Combining the previous two steps, we have:

Cmax(A) ⇢LB(OPT) ⇢Cmax(OPT)

which can be rewritten as
Cmax(A)

Cmax(OPT)
 ⇢

.

Notes:

• Must come up with a good lower bound

• Can replace Cmax with any objective.

Lower Bounds for P ||Cmax

• Average load

• Longest job

Lower Bounds for P ||Cmax

• Average load – dP pj/me

• Longest job – pmax = maxj{pj}

List Scheduling Algorithm

A Greedy Algorithm

1. Make a list of the jobs (in any order)

2. When a machine becomes available, schedule the next job on the list.

List Scheduling Algorithm

A Greedy Algorithm

1. Make a list of the jobs (in any order)

2. When a machine becomes available, schedule the next job on the list.

List Scheduling Algorithm

A Greedy Algorithm

1. Make a list of the jobs (in any order)

2. When a machine becomes available, schedule the next job on the list.

Analysis

• Let t be the last time at which all machines are busy.

• t P
j pj/m

• Cmax t + pmax
P
j pj/m + pmax .

Put this together with our lower bound:

Cmax t + pmax
X

j

pj/m + pmax 2LB 2OPT

Improved Algorithm

• Schedule length is average load plus last job.

• When last job is small, the schedule is shorter.

• Force last job to be small – LPT (Longest Processing Time).

LPT is a 4/3-approximation for P ||Cmax.

Proof Outline

• If last job is small (1/3OPT) then 4/3-approximation

• Otherwise, there are at most 2 jobs per machine and LPT is optimal.

Even better algorithms are possible: . A polynomial-time approximation
scheme (PTAS) is an algorithm that, given fixed ✏ > 0 , returns at (1 + ✏)
-approximation in polynomial time. The running time can have a bad
dependence on ✏, such as n

O(1/✏) .

P ||Cmax has a PTAS.

Precedence Constraints

• P1|prec|Cmax is known as project scheduling.

• P |prec|Cmax has a 2-approximation.

What are good lower bounds for P |prec|Cmax ?

Precedence Constraints

• P1|prec|Cmax is known as project scheduling.

• P |prec|Cmax has a 2-approximation.

What are good lower bounds for P |prec|Cmax ?

• Average load

• pmax

• any path in the precedence graph

• the critical path is the longest path in the precedence graph.

EEE'*→o
*⇒

Unit Processing Times

P |pj = 1, prec|Cmax is NP-hard.

Heuristics

• Critical Path (CP) rule

– The job at the head of the longest string of jobs in the constraint
graph has the highest priority

– P |pj = 1, tree|Cmax is solved by CP.

• Largest Number of Successors First (LNS)

– The job with the largest total number of successors in the constraint
graph has highest priority.

– For in-trees and chains, LNS is identical to CP

– LNS is also optimal for P |pj = 1, outtree|Cmax

• Generalization to arbitrary processing times is possible

Fixed Number of Processors

• P2|pj = 1, prec|Cmax is solvable in polynomial time

• P3|pj = 1, prec|Cmax is a big open question.

⇒
0%8-30
058

outta'D

o→o→o→0
entree

Fox

¥E¥¥⇒⇒⇒l
l
,

2. machines

t¥EI
'B' E¥=5 Cmaa)
CPI 8

i¥¥¥¥##÷

Goodideas
- work on jobs on critical
a.Bathers#s ofsuccessors#us

, oeeszsdr z i

⑧→⑧→②→⑦
9 8 I

①→⑦E¥ ,

→⑦ ,↳
⑤ ,

④ ¥¥⑧ I 1

,

P3lprec.BA/CmaxGrayetJohnsenNP-conphklNss
4978÷:÷÷÷:*"
s ED

:

2020 I wrestled problem

Preemptions: P |pmtn|Cmax

• McNaughton’s wrap-around rule is optimal.

Example
j pj

A 7
B 10
C 1
D 4
E 9

m⇒

LB ELI 31g
Pmaxe 10

Max (Pma. , EMI) is a lover bad

simple atg . fo this problem
.

Preemptions: P |pmtn|Cmax

• McNaughton’s wrap-around rule is optimal.

Example
j pj

A 7
B 10
C 1
D 4
E 9

mis lB=max(31,107=33

ii.ez
"

.I's
time'swanna't

,
"

#

Preemptions: P |pmtn|Cmax

• McNaughton’s wrap-around rule is optimal.

Example
j pj

A 7
B 10
C 1
D 4
E 9

Correctness
Fbs here to fit

•
Valid sdeddl : no job

.

I signified.ms at
time allowed z s±m . m= sq.

↳
Pma×

LP for P |pmtn|Cmax

Variables: xij is the time that job j runs on machine i . Cmax is also
a variable.

Constraints

• Each job runs for pj units of time

• Each machine runs for at most Cmax time.

• Cmax is more than any processing time.

minCmax (1)

s.t. (2)
Pm
i=1 xij = pj j = 1 . . . n (3)

Pn
j=1 xij Cmax i = 1 . . .m (4)

Pm
i=1 xij Cmax j = 1 . . . n (5)

(6)

Note that LP only assigns pieces of jobs to machines. Need to also assign
jobs to times.

amount of
•

Xi, > O Vij

corresp . → XaA=7 X2B=f} Xa 233

extaomplf
,

↳ 53--315 Keep XzpzylB
X3E=9

Machines with speeds – Q|pmtn|Cmax

• Machines M1, . . . ,Mm with speeds v1, . . . , vm .

• Assume wlog that v1 � v2 � vm

• Assume wlog that p1 � p2 � pn

• If a job runs for one unit of time on machine Mi , it uses up vi units
of processing.

• If job j runs on machine Mi , then it takes pj/vi time units to
complete.

Example
j pj

A 20
B 16
C 2
D 1

What are the lower bounds

3. machines Job A can
4=4 run

Vez 2 units of tire on M
,

✓3=1 20-4127=12
t f units of the en Mz

Lower bounds for Q|pmtn|Cmax

• What is the analog of pmax ?

• What is the analog of average load ?

• Are there others ?

RN,
(blsestjdb

'

Ep;
9m%fa§

ii. ctahehraesgan.
sunaefspeeds)P¥Eu=5I

¥.÷f÷÷÷÷ .←as it
OPT -

it

Lower bounds for Q|pmtn|Cmax

• What is the analog of pmax ? – p1/v1

• What is the analog of average load ? –
P
pj/

P
vi

• Are there others ? – Yes

General Lower Bound

Cmax � max

0

B@
p1

v1
,
p1 + p2

v1 + v2
, . . . ,

Pm�1
j=1 pj

Pm�1
i=1 vi

,

Pn
j=1 pj

Pm
i=1 vi

1

CA

Buy:*, 97.79¥ , nY¥BPy ,
Piti-Btpntps.

It's
/

Lower Bound

Cmax � max

0

B@
p1

v1
,
p1 + p2

v1 + v2
, . . . ,

Pm�1
j=1 pj

Pm�1
i=1 vi

,

Pn
j=1 pj

Pm
i=1 vi

1

CA

What is the lower bound for our example?

Can we achieve this lower bound?

f- (20176,42, i)
v-- CU , 2 , t)
cnn.sn hottie ,wu"¥I*I)
mad5%9

LRPT-FM

Longest Remaining Processing Time on Fastest Machines

Example 1
j pj

A 20
B 16
C 2
D 1

v = (4, 2, 1)

Example 2
j pj

A 20
B 16
C 12
D 1

Notes:

• LRPT-FM is optimal in continuous time

• LRPT-FM is near otimal in discrete time, for small time steps.

-CI D WH D)¥¥÷¥¥a¥¥t¥¥⇒h
73 :3 Bag Cmaxzf

BIG
A 2 3

after e. tire remade R- YE
rents) IR -2e

LRPT-FM

Longest Remaining Processing Time on Fastest Machines

Example 1
j pj

A 20
B 16
C 2
D 1

v = (4, 2, 1)

Example 2
j pj

A 20
B 16
C 12
D 1

Notes:

• LRPT-FM is optimal in continuous time

• LRPT-FM is near otimal in discrete time, for small time steps.

a.. :# units , TEETH)
)
6
, 41 =)

-:÷i÷¥¥¥¥¥¥¥¥¥

Continuous tire

t.in#k
age

switch infinitely often
between the RB

